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Abstract
In this paper we introduce a generalization of the popular DFT + U method based on the
extended Hubbard model that includes on-site and inter-site electronic interactions. The novel
corrective Hamiltonian is designed to study systems for which electrons are not completely
localized on atomic states (according to the general scheme of Mott localization) and
hybridization between orbitals from different sites plays an important role. The application of
the extended functional to archetypal Mott-charge-transfer (NiO) and covalently bonded
insulators (Si and GaAs) demonstrates its accuracy and versatility and the possibility to obtain a
unifying and equally accurate description for a broad range of very diverse systems.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Due to its moderate computational cost, the simplicity of its
formulation, and the ability to capture the effects of static
correlation, the DFT + U method [1, 2] (by DFT + U
we generically indicate the Hubbard-corrected local density
approximation, LDA + U , or the generalized gradient
approximation, GGA + U ) has become quite popular in recent
years to study systems with strongly localized (typically d
or f) and thus, correlated, valence electrons. DFT + U
consists of a simple corrective Hamiltonian, added to the
(approximate) DFT energy functional, that is shaped on the
Hubbard model [3–8]. In its single-band formulation the
Hubbard Hamiltonian can be written as follows:

HHub = t
∑

〈i, j〉,σ
(c†

i,σ c j,σ + h.c.)+ U
∑

i

ni,↑ni,↓ (1)

where 〈i, j〉 denotes nearest-neighbor sites, c†
i,σ , c j,σ , and ni,σ

are electronic creation, annihilation and number operators for
electrons of spin σ on site i . The Hubbard model is normally
used to describe the behavior of systems in the limit of strong
electronic localization. In these conditions the motion of

electrons is described by a ‘hopping’ process from one atomic
site to its neighbors (first term of equation (1)), the amplitude
of which t is proportional to the bandwidth of the system and
thus represents the single-particle term of the total energy. The
Coulomb repulsion, instead, is only accounted for between
electrons on the same atom through a term proportional to
the product of the occupation numbers of atomic states on the
same site. The effective strength of the ‘on-site’ Coulomb
repulsion is U . The explicit account for on-site electronic
repulsions is ideally suited to study Mott insulators. In fact, in
these systems the insulating character of the ground state stems
from the dominance of short-range Coulomb interactions (the
energy cost of double occupancy of the same site) over single-
particle terms of the energy (generally minimized by electronic
delocalization) [9] that leads to the localization of electrons on
atomic orbitals.

When electrons are strongly localized their motion
becomes ‘correlated’ and their wavefunction acquires a marked
many-body character. Capturing all the features of a strongly
correlated ground state using effective electronic interaction
potentials constructed as functionals of the charge density is
a formidable task. In fact, most of the current approximations
to the exact DFT energy functional are quite inaccurate in the
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description of the properties of systems characterized by strong
electronic localization. In spite of its simplicity, the Hubbard-
rooted DFT+U approach has been very effective in alleviating
these well known difficulties and has been successfully applied
to the study of a large number of quite diverse systems. In
recent years it has also been used as the starting approximation
for more sophisticated computational methods as, for example,
the dynamical mean-field theory (DFT + DMFT) [10, 11] and,
more recently, the GW approximation [12, 13].

The ‘on-site’ Hubbard Hamiltonian contains all the
essential ingredients to capture the physics of Mott localization
in strongly correlated systems and, in fact, a good description
of these systems is usually obtained with DFT + U . A
generalized (‘extended’) formulation of the Hubbard model,
with Coulomb interaction terms between electrons on neighbor
sites, has been considered since the early days of the Hubbard
Hamiltonian [6, 7]. However, to the best of our knowledge,
the extended Hubbard model has never been implemented in
any DFT-based functional, nor used in ab initio calculations.
In [14] the authors have stressed the need to consider the
off-site interactions and used constrained DFT to evaluate
the strength of the on-site U and the inter-site V effective
interactions. However, due to its very small value, the inter-
site coupling was only used to renormalize the on-site U
and all their calculations were performed using the ‘standard’
DFT + U approach. A simplified formulation of the original
extended Hamiltonian (with only charge interactions between
pairs of sites) is given in the following expression:

HHub = t
∑

〈i, j〉,σ
(c†

i,σ c j,σ + h.c.)+ U
∑

i

ni,↑ni,↓

+ V
∑

〈i, j〉
ni n j (2)

where V represents the strength of the interaction between
electrons on neighbor sites i and j .

The use of the extended model has been stimulated in
recent decades by the discovery of high Tc superconductors and
the intense research activity focusing around them. Whether
the inter-site coupling V has a determinant role in inducing
superconductivity is still matter of debate. The ‘resonating
valence bond’ model [15] predicts a superconducting state
(at least within mean-field theory) for a doped Mott insulator
with only on-site couplings [16]. However, several numerical
studies suggest that the inter-site interaction indeed plays an
important role [17, 18] and superconductivity is predicted in
a regime with repulsive on-site (U > 0) and attractive inter-
site (V < 0) couplings [19–22]. Several studies have also
demonstrated that in the ‘normal’ (non-superconducting) state
of superconductors and, in general, in correlated materials,
the relative strength of U and V controls many properties of
the ground state as, for example, the occurrence of possible
phase separations [23], the magnetic order [24, 25], the onset of
charge-density and spin-density-wave regimes [26]. In [2, 14]
the inter-site coupling (between d states) was recognized to
be important in determining a charge-ordered ground state in
mixed-valence systems; for Fe3O4, however, the computed
V was found to be quite small and the authors argued it
only contributes an effective renormalization of the on-site

U . In [27] the authors used the extended Hubbard model for
calculating the Green function of two particles on a lattice and
showed that a finite inter-site interaction significantly improves
the Auger core–valence–valence line shapes of solids. More
recently, the extended Hubbard model has been used to
study the conduction and the structural properties of polymers
and carbon nano-structures, and the interplay between U
and V was shown to control, for example, the dimerization
of graphene nanoribbons [28]. The importance of a more
accurate account of inter-site couplings, and of the detailed
balance with on-site interactions, has also been recognized
in a theoretical study of Fe impurities deposited on various
alkali metal films [29]. In this case, however, the hybridization
between the impurity d states and the s and p orbitals of the
alkali metal substrate was described using a one-body term
in the Hamiltonian (effectively corresponding to a generalized
hopping process between the localized and the delocalized
states) rather than a two-body inter-site electronic interaction.

In this work we introduce the extended Hubbard model
in DFT-based calculations through a generalization of the
DFT + U corrective functional that includes both on-site and
inter-site electronic interactions. The main aim of the novel
formulation is to improve the accuracy of the DFT+U scheme
and to make it quantitatively predictive for systems where
the correlation is not strong enough to induce a complete
Mott localization of electrons on atomic states, or for which,
in general, the hybridization between orbitals belonging to
different atoms plays an important role in determining the
properties of the ground state. The novel functional is tested
on quite diverse bulk solids such as NiO, Si and GaAs. In
NiO, a prototype strongly correlated material, d states are
quite well localized around Ni atoms. Nevertheless their
hybridization with O p states plays a quite significant role
and is one of the main factors to determine the charge-
transfer insulating character of the material. Si and GaAs
are, on the opposite extreme, typical band insulators. The
hybridization between s and p orbitals belonging to the same
and to neighbor sites plays a dominant role in determining
the electronic structure of these materials, as it leads to
the formation of bonds in between atoms (with tetrahedral
symmetry) and to the consequent onset of the semiconducting
character of these systems due to the splitting between bonding
(valence) and anti-bonding (conduction) states. The choice
of these systems is not casual: a computational scheme that
is able to describe accurately strongly localized as well as
‘strongly hybridized’ systems is likely to be successful for
intermediate situations, which are, by far, the most difficult
to treat. For each of these test systems we study electronic
and structural properties, comparing the results from the new
functional with those obtained from ‘standard’ DFT (GGA)
and DFT + U calculations. Improvements obtained with the
novel formulation and still remaining issues will be highlighted
in each case.

The paper is organized as follows: in section 2 the
extended DFT + U + V energy functional is introduced and
discussed. In section 3 we present the results obtained from
the application of this novel approach to the study of bulk NiO,
Si and GaAs. Finally, some concluding remarks are proposed.
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2. The extended DFT + U + V functional

The DFT + U approach was formulated and developed in
the 1990s [1, 2] to improve the accuracy of (approximate)
DFT in describing systems characterized by localized, strongly
correlated valence electrons. This scheme is based on a
correction to the DFT energy functional that can be generally
written as follows:

EDFT+U = EDFT + EU = EDFT + EHub − Edc. (3)

In this equation EHub is the part that contains electron–electron
interactions as modeled in the Hubbard Hamiltonian. Edc is a
mean-field approximation to EHub and models the amount of
electronic correlation already contained in EDFT. This term is
subtracted from the total functional to avoid double counting
of the electronic interactions contained in EHub.

In a commonly used simplified formulation [30] of the
rotationally invariant DFT + U [31], to which we will refer
in the present work, the total corrective functional has the
following expression:

EU = EHub − Edc =
∑

I,σ

U I

2
Tr[nIσ (1 − nIσ )]. (4)

In this equation the trace operator indicates the sum over the
diagonal elements of the matrix it acts on: Tr{O} = ∑

m Om,m .
nI,σ is the ‘on-site’ occupation matrix that is defined by the
projection of the occupied Kohn–Sham orbitals of spin σ

on the localized (atomic) states of orbital quantum number l
(typically of d or f kind) φ I

m :

nIσ
m,m′ =

∑

k,v

f σkv〈ψσkv |φ I
m′ 〉〈φ I

m |ψσkv〉. (5)

In equation (5) m is the magnetic quantum number associated
with l (−l � m � l), while f σkv are the occupations of
the Kohn–Sham orbitals ψσkv based on the distribution of their
energies around the Fermi level.

It is useful to show that the functional EU in equation (4)
can be obtained from a mean-field approximation of the
electronic interaction energy expressed in terms of atomic
orbitals:

Eint = 1
2

∑

I,J,K ,L

∑

i, j,k,l

∑

σ,σ ′
〈φ I

i φ
J
j |Vee|φK

k φ
L
l 〉

×
(

nK Iσ
k,i nL Jσ ′

l, j − δσσ ′nK Jσ
k j nL Iσ ′

li

)
. (6)

In this equation the atomic orbitals are classified by a site index
(upper case letter) and a comprehensive state index (lower case
letter) that runs over specific manifolds of states of the atom
labeled with the same letter (e.g., i indicates atomic orbitals
of the atom I ). The quantities 〈φ I

i φ
J
j |Vee|φK

k φ
L
l 〉 represent the

effective Coulomb interactions between the indicated atomic
orbitals and nK Iσ

k,i are the mean-field occupation numbers
(formally, mean-field averages of creation and annihilation
operators, 〈cIσ

i
†
cKσ

k 〉, to be associated to occupations defined
as in equation (5)). The on-site EHub term of the corrective
functional in equation (4) can be formally obtained from
the expression in equation (6) neglecting all the interactions

but the Hartree and Fock couplings between orbitals on
the same site. Due to the localization of atomic states,
it is further assumed that the effective interactions are
all equal to their atomic averages: 〈φ I

i φ
J
j |Vee|φK

k φ
L
l 〉 →

δI K δJ LδI J δikδ jlU I = δI K δJ LδI J δik δ j l

(2lI +1)2
∑

i ′,i ′′ 〈φ I
i ′φ I

i ′′ |Vee|φ I
i ′φ I

i ′′ 〉.
Within this approximation one easily obtains:

EHub =
∑

I

U I

2

[
(nI )2 −

∑

σ

Tr[(nIσ )2]
]

(7)

where nI is the total number of electrons on the atomic states
of atom I : nI = ∑

σ Tr{nIσ }.
The corrective functional in equation (4) was constructed

within the so-called ‘fully localized limit’ (FLL) [32, 33],
according to which the double-counting term is the mean-
field approximation of EHub (equation (7)) in the limit where
atomic orbitals are either fully occupied or empty. This double-
counting functional has the following expression:

Edc =
∑

I

U I

2
nI (nI − 1). (8)

Subtracting equation (8) from (7), EU in equation (4) is exactly
reproduced.

Generalizing the approach described above, the EHub of
DFT + U + V can be obtained from equation (6) supposing
that a significant contribution to the corrective potential also
comes from the interactions between orbitals on pairs of
distinct sites. Similarly to the on-site case, the (Hartree–
Fock-like) effective inter-site interactions are all assumed
to be equal to their atomic averages over the states of
the two atoms: 〈φ I

i φ
J
j |Vee|φK

k φ
L
l 〉 → δI K δJ Lδikδ jl V I J =

δI K δJ L δik δ j l

(2lI +1)(2lJ +1)

∑
i ′, j ′ 〈φ I

i ′φ J
j ′ |Vee|φ I

i ′φ J
j ′ 〉. Note that V I I = U I .

Within this hypothesis it is easy to derive the following
expression:

EHub =
∑

I

U I

2

[
(nI )2 −

∑

σ

Tr[(nI Iσ )2]
]

+
�∑

I J

V I J

2

[
nI nJ −

∑

σ

Tr(nI JσnJ Iσ )

]
(9)

where the star in the sum operator denotes that for each atom
I , index J covers all its neighbors up to a given distance (or
belonging to a given shell). Equation (9) uses a generalized
formulation of the occupation matrix (equation (5)) to allow
for the possibility that the two atomic wavefunctions involved
in its definition belong to different atoms:

nI Jσ
m,m′ =

∑

k,v

f σkv〈ψσkv |φ J
m′ 〉〈φ I

m |ψσkv〉. (10)

In equation (10) the indexes m and m ′ run over the angular
momentum manifolds that are subjected to the Hubbard
correction on atoms I and J respectively. It is important
to notice that the occupation matrix defined in equation (10)
contains information about all the atoms in the same unit cell
and the on-site occupations defined in equation (5) correspond
to its diagonal blocks (nIσ = nI Iσ ).

3
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For a complete expression of the DFT + U + V corrective
functional, a double-counting term needs to be defined as
well. Generalizing the FLL expression of the on-site double-
counting term, we arrive at the following expression:

Edc =
∑

I

U I

2
nI (nI − 1)+

�∑

I,J

V I J

2
nI nJ . (11)

Subtracting equation (11) from (9) we finally obtain:

EU V = EHub − Edc =
∑

I,σ

U I

2
Tr[nI Iσ (1 − nI Iσ )]

−
∗∑

I,J,σ

V I J

2
Tr[nI JσnJ Iσ ]. (12)

Having neglected the orbital dependence of the effective
coupling parameters (equation (6)) and all the interaction
terms involving states that belong to three and four distinct
atomic sites, the corrective functional in equation (12)
necessarily corresponds to a quite drastic approximation of
the full many-body part of the electronic Hamiltonian. To
discuss the underlying approximations in some detail it is
convenient to introduce the following notation: AI J K L

i jkl =
〈φ I

i φ
J
j |Vee|φK

k φ
L
l 〉(nK I,σ

ki nL J,σ ′
l j −δσσ ′nK J,σ

k j nL I,σ ′
li ). It is easy to

see that the inter-site interaction included in the DFT + U + V
functional defined in equation (12) corresponds to the terms
AI J I J

i j i j (with electronic couplings averaged over the orbitals
of the two sites). Other contributions describing cross charge
exchanges between neighbor sites (AI J J I

i j j i ), double (parallel)
electron transfers from one site to a neighbor one (AI I J J

ii j j ),
couplings between on-site charge and hopping from/to the
same site AI I I J

ii ′i j ′ , and coupled intra-site charge exchanges
(as, e.g., AI J I J

i j i ′ j ′ ) are all neglected. The terms included in
our corrective functional, AI J I J

i j i j , correspond to the sum of
the (atomically averaged) Hartree interactions between the
charge densities of two atomic states (either on the same
site or on distinct ones) and the corresponding exchange
counterparts. Due to the localization of the atomic orbitals
and the orthonormality condition imposed between them, these
terms are probably the dominant ones from a numerical point
of view. However, because of cancelation between EHub and
Edc only the exchange terms survive in the final expression of
EU V (equation (12)), both in the on-site and in the inter-site
parts. The choice of these terms is indeed consistent with the
approximation used in the original formulation of the extended
Hubbard model [6, 7] and in quite abundant literature where
the inter-site interaction is usually included through a V I J nI nJ

term.
As evident from equation (4), the on-site term of the total

energy introduces a finite energy cost for fractional atomic
occupations (if λI,σ

m is one eigenvalue of nI Iσ , EU is 0 for
λI

m = 0 or 1, positive otherwise); this penalty favors a Mott-
like ground state with correlated electrons localized on atomic
orbitals. The effect of the inter-site interaction can be easily
understood from the contribution of the corrective functional in
equation (12) to the total Kohn–Sham potential. This quantity
can be computed as the functional derivative of the energy with

respect to (ψσkv)
∗:

VU V |ψσkv〉 = δEHub

δ(ψσkv)
∗

=
∑

I

U I

2

∑

m,m′
(δmm′ − 2nI Iσ

m′m)|φ I
m〉〈φ I

m′ |ψσkv〉

−
∗∑

I,J

V I J
∑

m,m′
nJ Iσ

m′m |φ I
m〉〈φ J

m′ |ψσkv〉. (13)

From equation (13) it is evident that the on-site term of the
potential is attractive for occupied states that are, at most, linear
combinations of atomic orbitals of the same atom (resulting
in on-site blocks of the occupation matrix, nI Iσ , dominant
on others), whereas the inter-site one stabilizes states that are
linear combinations of atomic orbitals belonging to different
atoms (e.g., molecular orbitals, that lead to large off-site
blocks, nJ Iσ , of the occupation matrix). Thus, a competition
sets in between two opposite tendencies that allows for
more general localization regimes and increases the coupling
between orbitals on different sites. Obviously, the character of
the electronic ground state depends critically on the relative
strength of the on-site (U ) and the inter-site (V ) electronic
interactions. The detailed balance between these quantities
is guaranteed by the possibility of computing both parameters
simultaneously through the linear-response approach described
in [34]. In fact, the inter-site interaction parameters correspond
to the off-diagonal terms of the interaction matrix defined in
equation (19) of [34].

It is important to notice that the trace operator in the on-
site functional guarantees the invariance of the energy only
with respect to rotations of atomic orbitals on the same atomic
site. In fact, the on-site corrective functional (equation (7))
is not invariant for general rotations of the atomic orbital
basis set mixing states from different atoms. In the inter-
site term (equation (12)), the trace applied to the product of
generalized occupation matrices is not sufficient to re-establish
this invariance. In fact, for the corrective functional to be
invariant, the elements of the electronic interaction matrix
should transform as quadruplets of atomic orbitals and thus
have full site and orbital dependence. As discussed above,
instead, at the present level of approximation, interactions
between more than two atomic sites are assumed to be less
important than the ones included in equation (12) and orbital
dependence is totally neglected. Nonetheless, the inter-
site extension of the corrective functional represents, with
respect to the on-site case, a significant step towards general
invariance, as it contains, at least, some of the multiple-
site terms that would be generated by the rotation of on-site
ones. Furthermore, the possibility of evaluating both U and
V from linear-response theory [34] (at least for interactions
between pairs of atomic sites), guarantees a high level of
consistency between the atomic orbital basis set and the
interaction parameters used in the functional, and reduces
the dependence of the results on the specific choice of the
localized basis. Site and orbital dependence of the corrective
functional are implicitly included in Wannier-function-based
implementations of DFT + U [35–37], as becomes evident
by re-expressing Wannier functions on the basis of atomic

4
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orbitals. The two approaches would thus lead to equivalent
results if all the relevant multiple-center interaction parameters
are included in the corrective functionals and are computed
consistently with the choice of the orbital basis. While on the
basis of Wannier functions the number of relevant electronic
interactions to be computed is probably minimal (especially if
maximally localized orbitals are considered [38]), the atomic
orbital representation, besides providing a more intuitive
and transparent scheme to select relevant interaction terms
(e.g., based on inter-atomic distances), is more convenient to
compute derivatives of the energy as, for example, forces and
stresses that are crucial to evaluate the structural properties of
systems.

In the implementation of equation (12) we have added
the possibility for the corrective functional to act on two
l manifolds per atom as, for example, orbitals 3s and 3p
in Si, or orbitals 4s and 3d in Ni. To the best of our
knowledge, this feature has been implemented only recently
in a ‘standard’ (on-site) DFT + U functional [39] where,
however, at variance with our formulation, no interaction was
established between the two manifolds of the same atom. If we
call ‘standard’ the higher l states of each atom the Hubbard
correction acts on, and ‘background’ the other l manifold
being corrected, for a given pair of atomic sites I and J
(equation (12)), we have four interaction parameters: standard–
standard, standard–background, background–standard, and
background–background. Alternatively, the different Hubbard-
corrected manifolds on each atom can be seen as belonging
to different atoms located at the same crystallographic site.
The motivation for this extension consists in the fact that
different manifolds of atomic states may require to be treated
on the same theoretical ground in cases where hybridization is
relevant (as, e.g., for bulk diamond whose bonding structure
is based on the sp3 mixing of s and p orbitals). The
particular choice to have different interaction parameters
acting on different manifolds of atomic states, and the
possibility to include ‘cross-manifold’ interactions (basically
‘on-site’ V parameters between standard and background
states) eliminates the need of explicit intervention in the
construction of the basis set for cases where localization is
expected to occur on states different from atomic orbitals (as,
for example, in [40–42]).

While the inter-site interaction V can be calculated at
the same time as the on-site U and with no additional cost,
the computational workload of a DFT + U + V calculation
depends on the number of neighbors between which the inter-
site correction is established. For interactions between nearest
neighbors (all contained in a 3×3×3 supercell centered around
the primitive one) the computational cost is only marginally
bigger than for an on-site-only DFT + U ; if further shells
of neighbors are included in the summation of equation (12),
larger supercells around the primitive one may be needed and
the search of equivalent neighbors may increase significantly
the cost of the calculation (up to a 18% increase in the cpu
time for a 5 × 5 × 5 supercell compared to a 3 × 3 × 3 one).

3. Results and discussions

In this section we present the results obtained with the novel
functional applied to the study of the selected test systems:
NiO, Si, and GaAs. The choice to test a numerical approach
which traditionally would be used only for strongly correlated
materials on band insulators can appear unusual. From a
theoretical point of view, it is important to notice that, in
the context of DFT, the fundamental gap of Mott insulators
coincides with the discontinuity of the exact exchange–
correlation potential with respect to the number of particles,
(see, for example [43–45]); at the same time the absence of
such a discontinuity in approximate energy functionals often
leads to severe underestimates of the energy gap of band
insulators and semiconductors [46, 47]. From this point of
view, if DFT + U is effective in re-introducing this specific
feature in the energy spectrum of a strongly correlated system,
there is no reason for this approach not to be as effective for
other classes of materials. The only limitation to the use of
this approach to a broader class of system could consist in
the formulation of the corrective functional not being flexible
enough to describe more general localization regimes (in fact,
the ‘standard’ DFT + U was designed to describe correlation-
driven localization of electrons on atomic orbitals according to
the original Mott picture). This is indeed the aspect we want to
investigate through the development and the use of the general
DFT + U + V scheme. Analogous considerations to ours
have led the authors of [48] to operate a similar selection of
systems to test their reduced density matrix functional (RDMF)
approach.

For all these systems, comparison will be made with
the results obtained with DFT and with the ‘standard’, on-
site DFT + U . All the calculations were performed using
the plane-waves pseudopotential ‘pwscf’ code contained in
the Quantum ESPRESSO (QE) package [49], where we
implemented the ‘+U +V ’ correction starting from an existing
on-site DFT + U functional [49].

It is important to remark that for all the systems treated in
this work U and V were obtained using the linear-response
approach described in [34]. However, at variance with the
calculations presented in [34], the response matrices were
not constrained to give a neutral total response (in terms
of on-site occupations) when the perturbation is applied on
every atom. While this has no effects on the final results
if large enough supercells are used in the calculations, we
believe it to be a better strategy to compute the effective
interactions, especially if the response of all atomic orbitals
(standard plus background) is explicitly considered. A further
difference with the results presented in [34] consists in the
use of orthogonalized atomic orbitals to construct occupation
matrices. While not necessary, this choice guarantees that
the atomic occupation matrices satisfy more stringent sum
rules (their trace represents more closely the total number of
electrons on atomic states). Some small differences are to be
expected with the results obtained for NiO in [34]; however, we
believe that the consistent evaluation of the effective electronic
interactions (especially if obtained from a DFT + U ground
state) reduces these differences to a minimal value.
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3.1. NiO

As other transition metal oxides with the same stoichiometry,
nickel oxide has a cubic rock-salt crystalline structure. Below a
Neél temperature of 523 K, the magnetic moments of Ni atoms
arrange in an antiferromagnetic (AF) order (usually referred
to as AFII) where ferromagnetic (111) Ni planes alternate
with opposite magnetization. As a consequence of the AF
magnetic order the crystal acquires a rhombohedral symmetry.
Transition metal oxides (TMOs) have represented a significant
challenge for theorists, since their insulating character can
not be explained satisfactorily using band theory, due to the
intrinsic many-body origin of their band gap. Although within
Kohn–Sham (KS) theory the energy spectrum has no precise
physical meaning and is not guaranteed to reproduce the band
gap of the system, once the finite discontinuity of the (exact)
exchange–correlation potential is added to the KS HOMO–
LUMO energy difference the correct band gap should be
exactly reproduced [43, 45]. Failing to properly incorporate
many-body effects, most approximate exchange–correlation
functionals produce no discontinuity in the corresponding
potentials, thus resulting in quite poor estimates of band
gaps or in their total suppression. In fact, many TMOs are
predicted to be metallic, in striking contrast with the observed
insulating character. In some of these systems (e.g., FeO [34])
a lack of proper accounting of the many-body aspects of
the electronic structure also results in serious inaccuracies
in the description of the structural and magnetic properties.
Similar problems can be expected for NiO even if a gap (still
significantly smaller than the experimental one) fortuitously
opens in its Kohn–Sham spectrum as the result of the balance
between the exchange and the crystal-field splitting among
the d states of Ni (nominally occupied by eight electrons).
Photoemission experiments on NiO have measured a band gap
of about 4.3 eV (3.1 eV at the minimum intensity) [50] and
have explored several features of the spectrum assessing, in
particular, its charge-transfer character [50–52]. In fact, the
excitation of one electron across the band gap of the quasi-
particle spectrum corresponds to its transfer from the p states
of a ligand oxygen atom to the d states of a Ni atom. As
a consequence, the top of the valence band is dominated by
the p states of oxygen while the bottom of the conduction
one largely consists of Ni d states. Computational studies on
this material have been quite successful in reproducing these
features of its spectrum. DFT + U , whose corrective potential
is designed to introduce a finite energy difference between
occupied and unoccupied states, can be expected to produce
a more accurate estimate of the fundamental gap of a system
(in principle larger than the one appearing in photoemission
experiments). In fact, it has been used quite successfully to
study NiO and has produced a band gap of about 3.0–3.5 eV
(the precise value varies with the U used in different works)
and quite accurate estimates for both the magnetic moments
and the equilibrium lattice parameter [53–55]. For other details
of the density of states (as, e.g., the spectral weight of O p states
on top of the valence band), the agreement is not unanimous.
DFT + U has also been employed recently to compute the
k-edge XAS spectrum of NiO using a novel, parameter-
free computational approach [56] that has produced results

consistent with experimental data. In this paper the authors
highlight the importance of non-local excitation of d states
and, specifically, those involving second-nearest-neighbor Ni
atoms. The same intent of improving the description of
spectroscopic properties has been pursued with the GW
approximation based on a DFT + U ground state [12, 13];
this approach has provided a better estimate of the energy
gap compared to DFT + U , even though other details of the
density of states were almost unchanged [12]. Hartree–Fock
(HF) [57] and hybrid functionals (e.g. B3LYP) [57, 58] have
also been used to study NiO. While pure HF overestimates the
size of the band gap and fails to reproduce its charge-transfer
nature, hybrid functionals are more accurate and result in a
better estimate of the properties of this material. Most recently
DFT + DMFT calculations of NiO have explored the effects
of dynamical correlations and have produced a band gap in the
energy spectrum in excellent agreement with photoemission
experiments, even though its charge-transfer character was
not always well reproduced [59, 60]. A modification to
this method within the iterative perturbation theory has been
recently used to fix this particular aspect of the calculated
spectrum of NiO [61]. In this paper, the authors also present
a detailed discussion of the features of the DOS, remarking
the role of dynamical correlations (e.g., in eliminating the
excessive spectral weight of mixed Ni eg and O p states at the
bottom of the valence band, normally observed in DFT + U
and GW), and the importance that inter-spin and inter-atomic
components of the self-energy would have in fixing some still
remaining discrepancies in the computed spectrum compared
to the experimental one (e.g., the position of the occupied
satellite). This latter hypothesis will be discussed with the
results of the present work where inter-atomic couplings are
explicitly taken into account thanks to the extended functional
introduced in section 2.

All calculations presented in this paper were performed
in the AF configuration of the system. We used
ultrasoft [62] GGA pseudopotentials constructed with the PBE
parametrization [63]. Accurate estimates of the total energies
required energy cut-offs of 40 and 400 Ryd for the plane-wave
expansion of wavefunctions and charge density respectively
and a 4 × 4 × 4 Monkhorst–Pack k-point grid [64] to sample
the Brillouin zone of this system.

The electronic interaction parameters (U and V ) used in
this work were recomputed for each considered lattice spacing
(using the linear-response approach of [34]). Figure 1 shows
the dependence of some of these parameters on the size of the
unit cell. It is important to remark that these parameters are
not directly comparable with those evaluated in [34] for two
reasons: first, in the present calculations we have explicitly
included the response of the ‘background’ states, which could
not be done in the previous work; second, at variance with
what was done in [34] to define the on-site occupation
matrix we have used atomic orbitals that were preliminarily
orthogonalized. However, since Us and V s are consistently
computed and used within the same approximation (i.e., using
the same definition of the occupations) in both works, the most
significant differences are expected to arise from using a V -
augmented functional.
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Figure 1. (Color online) The variation of the on-site and inter-site
electronic couplings as functions of the cubic lattice parameter of
NiO. The interaction parameters were obtained from a GGA ground
state (top graph) or from a GGA + U + V ground state (bottom
graph) according to a self-consistent procedure (see text). Black lines
represent on-site (Ni only) interactions, red ones describe the
couplings between nearest neighbors (Ni–O), blue ones between
next-nearest neighbors (Ni–Ni). Solid lines are for
standard–standard, dashed for standard–background, and dot-dashed
for background–background interactions respectively.

As can be observed from figure 1 (top graph) the on-
site U is the parameter that changes the most with the size
of the unit cell. Other electronic couplings are much less
affected and the dependence of the interaction between second-
nearest neighbors (Ni–Ni) on the lattice parameter is almost
negligible. While the parameters shown in the top graph of
figure 1 were obtained from the GGA ground state of the
system, those represented in the bottom graph were computed
‘self-consistently’ from a GGA + U + V ground state using
a method equivalent to that of [65], but based on a more
efficient algorithm that will be described elsewhere. Although
all the electronic interactions are obtained at the same time
(including those for ‘background’ states and their coupling
with ‘standard’ ones) the interaction parameters between the p
states and between p and s states of oxygen (all UO and VO−O)
were excluded from our DFT + U + V calculations. While
a rigorous motivation for this choice is presently missing, we
believe that the corrective action of the ‘+U + V ’ functional
is mostly needed for open manifolds around the Fermi level
(or the top of the valence band) while the p and s states
of oxygen are almost completely full. Besides the on-site
UNi, first (VNi−O) and second (VNi−Ni) nearest-neighbor inter-
site couplings (between ‘standard’ and ‘background’ states)
were all included in our calculations; the inclusion of the

Table 1. The equilibrium lattice parameter, (a, in Bohr atomic radii),
the bulk modulus (B, in GPa), and the band gap (Eg, in eV) of NiO
obtained with different computational approaches: GGA,
‘traditional’ GGA + U (with U only on the d states of Ni),
GGA + U + V and a ‘self-consistent’ GGA + U + V with the
interaction parameters computed from a GGA + U + V ground state
(see text). Comparison is made with the experimental results on all
the computed quantities.

a B Eg

GGA 7.93 188 0.6
GGA + U 8.069 181 3.2
GGA + U + V 8.031 189 3.6
GGA + U + V sc 7.99 197 3.2
Exp 7.89a 166–208b 3.1–4.3c

a Reference [68]. b Reference [69].
c Reference [50, 52].

interactions between further neighbors was found to produce
no relevant effect. For all the approaches compared in this
work (GGA, GGA + U and GGA + U + V ) the optimization
of the rock-salt cubic structure (in the AF ground state) was
performed using the cell-size-dependent electronic couplings
plotted in figure 1, fitting the dependence of the total energy
on its volume on a Murnaghan equation of state. Using size-
dependent electronic couplings has been recently shown to be
fundamental for quantitative descriptions of the structural and
electronic properties of materials and for accurate evaluations
of transformation pressures between, e.g., different spin or
structural phases [66, 67].

Table 1 compares the equilibrium lattice parameters, the
bulk moduli, and the energy band gap obtained in the three
different approaches with results from experiments. In each
case the band gap of the material was measured for the
equilibrium lattice parameter reported in the same table. A
comparison between the DOS obtained within the different
approaches is made in figure 2.

Our GGA calculations (figure 2, top graph) result in
an equilibrium lattice spacing of 7.93 Bohr, which is quite
consistent (+0.5%) with the experimental value of 7.89 Bohr
and provides a good estimate of the bulk modulus (187.7 GPa).
As expected from other GGA results, the band gap (∼0.6 eV)
is smaller than the observed one (3.0–4.3 eV) and its
spectroscopic nature is also not consistent with experiments as
the top of the valence band is dominated by the d states of Ni
instead of O p. It is important to notice that the peak at 5 eV
below the edge of the valence band contains contributions from
both O and Ni and, as specified in other works (see, e.g., [55]),
is the signature of the hybridization between deg and p states.
This is a spurious feature, as the lowest part of the valence
manifold should be dominated by t2g states instead [50–52].

GGA + U (U on Ni d states only) leads to a significant
improvement in the size of the band gap (3.2 eV) compared
to GGA, and O p states are dominant on the top of the
valence band in agreement with experimental results (figure 2,
second graph from the top). The equilibrium lattice parameter
obtained with GGA + U (8.069 Bohr) is larger than the
one obtained with GGA, less in agreement with experiments
(table 1). Also, the crystal resulting is softer with a bulk
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Figure 2. (Color online) The density of states of NiO obtained with
different approximations: (a) GGA; (b) GGA + U (U on Ni d states
only); (c) GGA + U + V including on-site (UNi) and inter-site
(VNi−Ni and VNi−O) interactions computed from a GGA ground state;
(d) GGA + U + V with interactions computed ‘self-consistently’
from a GGA + U + V ground state. In all graphs the black and red
lines represent majority and minority spin d states of Ni, the blue line
the p states of O. The energies were shifted for the top of the valence
band to correspond to the zero of the energy in all cases.

modulus of about 181 GPa (still in the range of experimental
results). While the almost exclusive presence of p bands on
top of the valence band seems to overestimate the spectral

weight of these states compared with the results of other
calculations [53–55], the dominant p character of the peak
at −2 eV, and the appearance of a peak at −4.5 eV, mainly
due to minority spin t2g Ni states, have not been highlighted
in experiments [52]. However, the position of a strong peak
in the DOS, at about −7 eV from the valence band edge,
appears consistent with experimental results [50], although
further analysis would be needed to assess its character. The
clear-cut separation between p states and lower energy d states
is, instead, unusual for DFT+U calculations. This latter aspect
may be due to the different value of the U parameter used with
respect to other calculations of this kind.

Using GGA + U + V (figure 2, third graph from the
top), the equilibrium lattice parameter (table 1) is corrected
towards the experimental value (8.03 Bohr), while the bulk
modulus equals 189 GPa and a band gap of about 3.6 eV
opens between O p and Ni d states correctly placed at the
top of the valence band and the bottom of the conduction one
respectively. The band structure of the system shows some
differences from the one obtained with GGA+U . With respect
to the GGA + U results, the minority spin d states of Ni have
moved upwards in energy and show a larger overlap with the p
states of O, suggesting a larger degree of hybridization. As a
result, the peak at −2.5 eV acquires a markedly mixed d and
p character, and the central peak, mainly due to Ni minority
spin d states, moves to slightly higher energy at −4 eV from
the gap. The occupied satellite peak, which also appears at
slightly higher energy (≈−6.5 eV) than in the GGA+U DOS,
is still dominated by Ni majority spin d states.

Using the ‘self-consistent’ GGA + U + V (i.e., with U
and V computed from a GGA + U + V ground state) we
obtained an equilibrium structure in better agreement with
experimental results (a = 7.99 Bohr), a bulk modulus of
about 197 GPa (still within the range of available experimental
data) and a band gap of 3.2 eV (figure 2, bottom graph).
The electronic structure in this case is quite similar to that
obtained within the non-self-consistent GGA+U+V approach
(figure 2, third graph from top). However an even larger
overlap can be observed between Ni d and O p states in the
upper part of the spectrum, with a peak below the edge of the
valence band at ≈−2.2 eV that is dominated by Ni states, in
agreement with experiments [50]. The occupied satellite peak,
at about −6 eV, is still dominated by Ni d states, although
the p state component seems slightly more significant in this
case. It is important to notice that the valence DOS has now
acquired three dominant features that correspond to the O
peak at the top of the band, a Ni-dominated peak at about
−2.2 eV and a strong d peak at −6 eV. These characteristics are
consistent with the results from photoemission experiments,
although the relative spectral weight of these peaks are not in
quantitative agreement with observations. Furthermore we do
not observe the downshift of the occupied satellite (actually
moved to slightly higher energies) that in [61] is expected
to arise from the explicit inclusion of inter-site electronic
interactions in the corrective functional. In our opinion
these discrepancies are due to the fact that, at the present
level of approximation, electronic interaction parameters are
only site dependent. While dynamical correlation may
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Figure 3. Intra-site (U ) and inter-site (V ) interaction parameters as
functions of lattice parameter for GaAs with 3d electrons as valence
electrons. (a) Intra-site interactions. Squares correspond to Ga atoms
and circles to As atoms. Open symbols represent Uss

(standard–standard), filled symbols represent Usb

(standard–background) and symbols with crosses represent Ubb

(background–background). (b) Inter-site interactions. Arrows
indicate the equilibrium lattice parameter.

play an important role, as demonstrated by DFT + DMFT
calculations [59–61], we believe that the most significant
refinement needed to reproduce all the details of the spectrum
of the material consists in the formulation of an extended
model with fully orbital-dependent interaction parameters.
Specifically, a distinction should be made between the (inter-
site) interactions of O p states with Ni t2g and eg states.

In summary, GGA + U + V offers a quite significant
improvement in the description of NiO compared to GGA+U ,
and we believe that in providing a more realistic representation
of electronic and structural properties it can be a better
starting approximation for numerical approaches (as GW or
DFT + DMFT) aimed at predicting the excitation spectrum
of the material or at studying the effects of dynamical
correlations.

3.2. Si and GaAs

For Si and GaAs, DFT calculations based on LDA
and GGA approximate functionals provide results for the
structural properties (e.g., the lattice parameter and the
bulk modulus and its first derivative) [70–72] and the
vibrational spectrum [73] in good to excellent agreement
with experiments. GGA normally results in slightly larger
equilibrium lattice constants and softer bulk moduli than
the measured ones [71, 72, 74]. However, for reasons
mentioned in one of the previous sections, the computed
band gap of these materials systematically underestimates
the experimental value. Many corrective approaches have
been developed to overcome these difficulties inherent to
standard DFT approximations, and quite good agreement with
the experimental spectrum could be obtained using the exact
exchange (EXX) [75, 76], hybrid functionals [77], or methods
specifically designed to reproduce the electronic excitation
spectrum, such as the GW approach based on an LDA [78, 79]

Table 2. Interaction parameters U and V (eV) for Si and GaAs
(Note: Ga 3d electrons as valence electrons.) Inter-site terms are for
first neighbors and the listed values are for the equilibrium lattice
parameters found with GGA + U + V . Indexes s and b stand for
‘standard’ and ‘background’ orbitals respectively, as discussed in the
text.

Uss Usb Ubs Ubb Vss Vsb Vbs Vbb

Si–Si 2.82 3.18 3.18 3.65 1.34 1.36 1.36 1.40
Ga–Ga 3.14 3.56 3.56 4.17
As–As 4.24 4.38 4.38 4.63
Ga–As 1.72 1.68 1.76 1.75

or a EXX [80] ground state. In the present work, we investigate
the performance of the GGA + U + V functional on Si and
GaAs and compare its results with those from standard GGA
and GGA + U . In these semiconductors, the hybridization
between s and p orbitals and the formation of covalent bonds
between neighbor atoms are key ingredients to understand
their structural and electronic properties. Thus, the corrective
functional introduced in the present paper has to contain
coupling terms between neighbor atoms and between s and p
manifolds on the same site.

As mentioned above, for both Si and GaAs we have used
GGA exchange–correlation functionals constructed with the
PBE parametrization [63]. In particular for Si we employed
a norm-conserving pseudopotential. This potential required
an energy cut-off of 40 Ryd for the plane-wave expansion of
the Kohn–Sham wavefunctions. For GaAs we used, instead,
ultrasoft pseudopotentials [62] that required cut-offs of 40 and
400 Ryd for the expansion of the electronic wavefunctions and
charge density respectively. As [81] points out, predictions for
gallium compounds can be very sensitive to the inclusion of
3d electrons in the valence manifold for Ga pseudopotentials.
Thus, two alternatives were considered, with Ga 3d electrons
in the valence manifold or frozen in the core. We will refer
to these two different situations as GaAs(v) and GaAs(c)
respectively. For both materials (Si and GaAs), the Brillouin
zone was sampled with a 8 × 8 × 8 Monkhorst–Pack [64]
k-point grid.

In order to determine the equilibrium lattice parameter
and the bulk modulus, the dependence of the ground state
energy on volume was fitted by the Murnaghan equation of
state. As in the case of NiO, DFT + U and DFT + U +
V total energy calculations were performed using effective
interactions consistently recomputed for each value of the
lattice parameter. Figure 3 illustrates the dependence of Us
and V s on the size of the unit cell in the case of GaAs(v).
In table 2, the on-site and inter-site interactions computed
at the equilibrium lattice parameter are grouped to ease the
comparison. It is important to notice that the values of
either the Us or the V s are very similar, irrespective of the
orbital manifold they act on (p or s states). This result, more
evident for GaAs and for the inter-site couplings, is due to the
hybridization of p and s orbitals and corroborates the need to
treat both types of states at the same level.

In table 3, the equilibrium lattice parameter, the bulk
modulus and the band energy gap obtained from GGA, GGA+
U and GGA + U + V calculations on Si and GaAs can
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Table 3. Comparative results for lattice parameter (a, in Å), bulk
modulus (B, in GPa) and energy gap (Eg, in eV).

Si GaAs(v)a GaAs(c)b

a B Eg a B Eg a B Eg

GGA 5.479 83.0 0.64 5.774 58.4 0.19 5.578 65.7 1.25
+U 5.363 93.9 0.39 5.736 52.6 0.00 5.616 62.7 0.81
+U + V 5.370 102.5 1.36 5.654 67.7 0.90 5.535 76.5 1.97
Exp.c 5.431 98.0 1.12 5.653 75.3 1.42 5.653 75.3 1.42

a Ga 3d electrons as valence electrons.
b Ga 3d electrons in the core.
c At 300 K, from [82]. At 0 K, the energy gaps of Si and GaAs
are estimated to be 1.17 eV and 1.52 eV respectively [82].

be directly compared with experimental measurements of the
same quantities (we refer to the data collected in the web
database, [82]). As expected from abundant literature, GGA
overestimates the equilibrium lattice parameter with respect
to the experimental value (except for the case of GaAs(c)),
while the bulk modulus and the band gap are underestimated
in all cases. On-site GGA + U predicts the equilibrium
lattice parameter in better agreement with the experimental
value (overcorrected for Si); however, the bulk modulus is
improved with respect to the GGA value only in the case
of Si. In all three cases, however, the energy band gap is
lowered compared to GGA, further worsening the agreement
with experiments. While this result may appear strange, it
is not unexpected. In fact the on-site corrective functional
suppresses the hybridization between states on neighbor atoms
that is largely responsible for the band gap in semiconductors
between valence (bonding) and conduction (anti-bonding)
states. The use of the inter-site correction, in spite of the
fact that V s are smaller than half the on-site Us, results
in a systematic improvement for the evaluation of all these
quantities. In fact, encouraging the occupations of hybrid
states, the inter-site interactions not only enlarge the splitting
between populated and empty orbitals (which increases the
size of the band gap), but also make the bonds shorter (so
that hybridization is enhanced) and stronger, thus tuning both
the equilibrium lattice parameter and the bulk modulus of
these materials to values closer to experimental results. For
GaAs, the calculations with the Ga 3d states in valence are
more accurate than the ones with these atomic states frozen
in the core. In fact, for GaAs(v) we obtain an equilibrium
lattice parameter in excellent agreement with the measured
one. The bulk modulus and the band gap, while smaller
than the experimental values, are significantly closer to these
than the estimates obtained with GGA and GGA + U . For
GaAs(c), however, while the bulk modulus is in very good
agreement with experiments, the equilibrium lattice spacing is
underestimated and the band gap significantly overestimated,
worsening, for both quantities, the accuracy of the results
obtained with GGA and GGA + U . Our results thus confirm
that Ga 3d should be treated as valence states; in the present
study, however, they are not directly subject to the Hubbard
functional.

Despite the overall improvement obtained with GGA +
U + V , some discrepancies with the experimental results still

persist regarding, especially, the equilibrium lattice constant
and the bulk modulus. However, it should be kept in mind
that computational results presented in this section would be
directly comparable to 0 K measurements, for which slightly
shorter lattice parameters and slightly higher bulk moduli are
predicted [82] (see the footnotes of table 3 for details).

Figure 4 displays the GGA and GGA + U + V band
structures and density of states for Si and GaAs. The energies
were shifted so that the top of the valence band corresponds to
the zero of the energy in all cases. The correction introduced by
the GGA + U + V (with respect to the GGA band structure) to
the conduction band consists in an almost rigid upward shift in
energy. In the valence manifold, however, the correction to the
energy levels acquires a slight k-dependence and has a more
pronounced effect on the lowest energy level, which is shifted
downward. This latter effect results in an increase of the total
bandwidth of these systems (by 0.6 eV for GaAs and by 0.8 eV
for Si) compared to GGA, and accounts for perfect agreement
with experimental results (the measured bandwidth is 12.5 eV
for Si and 13.2 eV for GaAs [78]).

In summary, the GGA + U + V shows significant
improvement over GGA and GGA + U in the description
of the structural and electronic properties of Si and GaAs.
Although the dominant effect arises from the interaction
between nearest-neighbor sites, for both Si and GaAs the
inclusion of the coupling between further neighbors could
bring a refinement of the results presented in this section.
Also, in the case of GaAs with Ga 3d electrons in valence,
more accurate results could be obtained accounting for the
hybridization of these states with 4s and 4p orbitals (probably
the overlap with the states of As is quite limited) and including
the corresponding interaction parameter in the ‘+U + V ’
corrective functional. Since the GGA and the GGA + U +
V ground states are qualitatively similar, we expect a ‘self-
consistent’ evaluation of U and V to have a minor effect on the
presented results both for Si, and GaAs.

4. Conclusions

In this paper we have introduced a useful generalization of
the popular DFT + U method that, modeled on the extended
Hubbard Hamiltonian, includes on-site (U ) and inter-site (V )
electronic interactions and is able to correct up to two angular
momentum manifolds per atom. The competition between the
two kinds of electronic couplings avoids the over-stabilization
of occupied atomic orbitals, often affecting the on-site DFT +
U , and allows for the description of more general ground states
where electrons ‘localize’ on hybridized (e.g., molecular)
orbitals. The flexibility in the representation of occupied states
is further enhanced by the larger number of orbital manifolds
that are simultaneously subject to the action of the corrective
functional. Numerical accuracy is guaranteed by the linear-
response calculation of U and V that allows one to evaluate
the relative strength of the two couplings and, thus, to precisely
determine the degree of electronic localization of the ground
state.

The effectiveness of the method is demonstrated in this
paper by its successful application to the quite diverse test
systems NiO (Mott/charge-transfer insulator), Si and GaAs

10



J. Phys.: Condens. Matter 22 (2010) 055602 V Leiria Campo Jr and M Cococcioni

Figure 4. Band structure and density of states of Si and GaAs (core
case). Continuous lines represent GGA + U + V results and dashed
lines represent standard GGA results. All energies were shifted so
that the top of valence bands are at zero energy.

(band semiconductors). For both classes of materials the
use of the DFT + U + V functional results in a significant
improvement (over approximate DFT and DFT + U ) in the
agreement of the structural (equilibrium lattice parameter and
bulk modulus) and electronic (overlap of p and d states, band
gap) properties with available experimental results. For Si and
GaAs this improvement is more consistent, probably due to the

higher level of structural isotropy of these materials, for which
a corrective functional with orbital independent interactions is
better suited.

The importance of these results is not limited to the more
accurate description the selected test systems received. In
fact, they demonstrate that the novel computational approach
provides a unified theoretical framework able to treat systems,
as diverse as Mott, charge-transfer, and band insulators,
with equal accuracy and comparable computational effort.
Furthermore, the use of the extended Hamiltonian provides a
new route to improve the corrective functional in a systematic
way, as it allows the addition of interactions between further
shells of neighbors independently and, thus, to easily assess
their individual contributions to the final results. This
procedure also leads to the possibility to set calculations with
minimal cost (with a minimal set of inter-site interaction
terms).

Potential applications of this novel corrective functional
are quite broad. Besides high Tc superconductors (for which
the nearest-neighbor electronic couplings has sometimes been
demonstrated to play a very important role), the remarkable
success obtained with strongly localized (correlated) and
strongly hybridized systems, suggests that intermediate
situations where ‘correlated’ and ‘non-correlated’ orbitals
show significant overlap (as, e.g., semiconductors doped with
magnetic impurities, metallic active centers of molecular
complexes, etc) and phenomena where a switch between
different localization regimes is observed (e.g., in bond
breaking and formation events) are likely to be described more
accurately by the novel DFT+U+V scheme. This is especially
true for isotropic systems that better fit the simple ‘+U + V ’
functional based on orbital independent interactions; more
anisotropic materials may require, however, extra attention.
The development of a more flexible corrective Hamiltonian
based on orbital-dependent effective interactions, needed in
these cases, is planned for future investigations.
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[75] Städele M, Moukara M, Majewski J A, Vogl P and

Görling A 1999 Phys. Rev. B 59 10031
[76] Nguyen H-V and de Gironcoli S 2009 Phys. Rev. B 79 205114
[77] Heyd J, Sucseria G E, Martin R L and Peralta J E 2005

J. Chem. Phys. 123 174101
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